A BDDC Preconditioner for the RotatedQ1FEM for Elliptic Problems with Discontinuous Coefficients

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A BDDC Preconditioner for Saddle Point Problems

The purpose of this paper is to extend the BDDC (balancing domain decomposition by constraints) algorithm to saddle point problems that arise when mixed finite element methods are used to approximate the system of incompressible Stokes equations. The BDDC algorithms are defined in terms of a set of primal continuity constraints, which are enforced across the interface between the subdomains, an...

متن کامل

BDDC methods for discontinuous Galerkin discretization of elliptic problems

A discontinuous Galerkin (DG) discretization of Dirichlet problem for second-order elliptic equations with discontinuous coefficients in 2-D is considered. For this discretization, balancing domain decomposition with constraints (BDDC) algorithms are designed and analyzed as an additive Schwarz method (ASM). The coarse and local problems are defined using special partitions of unity and edge co...

متن کامل

A mortar element method for elliptic problems with discontinuous coefficients

This paper proposes a mortar finite element method for solving the two-dimensional second-order elliptic problem with jumps in coefficients across the interface between two subregions. Non-matching finite element grids are allowed on the interface, so independent triangulations can be used in different subregions. Explicitly realizable mortar conditions are introduced to couple the individual d...

متن کامل

A FETI-DP Preconditioner with A Special Scaling for Mortar Discretization of Elliptic Problems with Discontinuous Coefficients

We consider two-dimensional elliptic problems with discontinuous coefficients discretized by the finite element method on geometrically conforming nonmatching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a dual-primal FETI method. In this paper we introduce and analyze a preconditioner with a special scaling of coefficients and step...

متن کامل

Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2014

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2014/859424